INFORMATION THEORY AND CRYPTOGRAPHY

Lecturer: Idrisova Valeriya Aleksandrovna

Semester: 1 Duration: 6 weeks

Workload (h): 180 **Presence** (h): 74 **Self-Study** (h): 106

Contents: The course contains topics about basic notions and concepts in the information theory, data compression, coding theory and cryptography.

Background and relations to other courses: algebra, discrete mathematics and combinatorics, number theory, probability theory.

Themes	Learning objectives
Introduction to the information theory, signal theory, sampling, notion of entropy.	<i>To know and understand</i> the notion of information and approaches to measuring the amount of information.
Transmission through the noisy channel. Error- correcting codes. LDCP- codes.	<i>To know and understand</i> widespread methods of error-correction. <i>To apply</i> these methods in practice.
Data compression theory.	<i>To know and understand</i> basic techniques of data compression and classic algorithms such as Huffman coding, arithmetic coding, LZ77, LZ78 etc. <i>To apply</i> these methods in practice.
Modern methods of cryptography and cryptanalysis. Perfect secrecy. Block ciphers and stream ciphers. Boolean functions. Public-key cryptography. Cryptanalysis of symmetric and public-key systems.	<i>To know and understand</i> classic and modern ciphers and cryptosystems such as DES, AES, GOST, A5/1, Grain, RSA, ElGamal etc. <i>To know</i> basic methods of cryptanalysis meet-in-the-middle attack, birthday paradox attack, linear, differential and algebraic techniques of statistical cryptanalysis. <i>To apply and implement</i> these methods in practice.

Main topics and learning objectives:

Assessment:

Formative: in interaction with lecturer and tutor during learning period.

Summative:

Number and Type; Connection to Course	Duration	Part of final mark in %
Final interview	2 hours	50%
Course Assignments		50%

Learning outcomes:

Academic: to be able to develop software that includes algorithms and notions mentioned above.

Prerequisites for Credit Points: The credit points will be granted when the course has been successfully completed, i.e. all parts of the examination are passed.